Ctrl+D收藏抖音小说-笔趣阁
抖音小说Douyinxs.com
抖音小说-笔趣阁 > 玄奇 > 穿越:2014 > 第169章 你渴望推开那扇门么(6)

第169章 你渴望推开那扇门么(6)

反而是基于字符串判定文本相似度这种方法最为贴切。

毕竟这种基于字符串的判别方法和计算机视觉的直观逻辑形式最为接近的一种。

事实上文本识别算法在后世同样是很寻常的技术。

甚至于随便一个聊天软件的截图工具都能很好的胜任文本识别的任务。

而现在这个时空哪怕一些专门打出文本识别为噱头的软件。

实际上进行的工作只是扫描文稿转成pd而已。

涉及到实际的文本识别效率低的一批。

林灰感觉似乎又无意间发现了一个商机。

虽然是发现了一个商机,也不适合现在去做。

毕竟涉及到文本识别这方面还是跟计算机视觉这个领域有关系的。

所谓的计算机视觉说白了就是让机器看东西。

这个算是人工智能的一个领域。

这个领域的研究是为了让计算机和系统能够从图像、视频和其他视觉输入中获取有意义的信息。

根据这些信息机器采取行动或提供建议。

如果说人工智能赋予计算机思考的能力。

那么计算机视觉就是赋予发现、观察和理解的能力。

计算机视觉虽然不能说多么复杂吧。

但起码门槛比自然语言处理要高得多。

显然不适合林灰现在掺和。

不过林灰有耐心,林灰默默地将这件事放在了心里。

林灰觉得不能目光太短浅。

有些东西虽然现在看起来很鸡肋。

未必就代表长远角度没有用途。

心念及此,林灰突然觉得很庆幸。

重生之后,前世的经验让其游刃有余。

另一方面,重生带给他让他受益的就是思维上的改变。

涉及到很多事物林灰都会下意识地考虑到长线价值。

甚至不经意间会考虑到十年二十年之后的事情。

有这种长线思维方式。

林灰觉得假以时日他一定能走到一个鲜有人企及的高度。

但这些想法就不足为外人道也。

虽然就基于字符串评价文本相似度的方法和尹芙·卡莉有些分歧。

但林灰并没有表露出来,学术上的交流很多时候也只是求同存异而已。

尹芙·卡莉还在继续陈述着她的看法:

“……我觉得将向量引入到语义文本相似度的衡量确实是一个不错的主意。

不过在介入向量之后,就像打开了潘多拉的魔盒一样。

向量在处理一些语义复杂的文本信息时。

极其容易形成一些高维空间,造成维度爆炸。

出现这种情况后,应用场景经常会变得极其糟糕。

经常出现维度爆炸的问题。

事实上,现在维度爆炸问题已经很制约我们的研究了。

dear林,不知道您关于这个问题有什么看法呢?”

林灰道:“维度爆炸主要是高维难处理的问题。

既然如此,为什么不考虑将高维进行降维呢?”

林灰的语气是那样的风轻云澹。

仿佛在叙述一件自然而然的事情一般。

降维?将高维的什么进行降维??

听了翻译同传过来的信息。

尹芙·卡莉有种要吐血的感觉。

她有点想学了。

她不知道林灰表达的原意就是将高维转化为低维。

还是说林灰在表述的时候说的是将高维的某物转化的低维但翻译在转达的时候却省略了什么东西。

如果是省略了一些重要的名词那实在是太糟糕了。

到底林灰想表达是将高维数据转化为低维数据?

还是说将高维模型转化为低维模型?

抑或是什么其他含义?

尹芙·卡莉很想询问一下。

不过考虑到林灰先前为了米娜·卡莉做出的贴心之举。

尹芙·卡莉并不好就这种事情让林灰带来的翻译陷入到不安之中。

仔细思索林灰话里的含意。

首先尹芙·卡莉觉得林灰想说的应该不是将高维数据降低成低维数据。

在进行自然语言处理时如果出现了高维数据的话。

在分析高维数据时,确实是可以进行降维的。

也必须要进行降维!

高维数据模型虽然收集到的数据点很多。

但是所收集到的数据通常会散布在一个极其分散广袤的高维空间中。

这种情况下很多统计方法都难以应用到高维数据上。

这也是“维度灾难”存在的原因之一。

本站域名已经更换为www.adouyinxs.com 。请牢记。